3.109 \(\int \sec ^2(c+d x) \sqrt{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=72 \[ \frac{\sec (c+d x) \sqrt{a \sin (c+d x)+a}}{d}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{\sqrt{2} d} \]

[Out]

-((Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(Sqrt[2]*d)) + (Sec[c + d*x]*Sq
rt[a + a*Sin[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0793447, antiderivative size = 72, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {2675, 2649, 206} \[ \frac{\sec (c+d x) \sqrt{a \sin (c+d x)+a}}{d}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a \sin (c+d x)+a}}\right )}{\sqrt{2} d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

-((Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(Sqrt[2]*d)) + (Sec[c + d*x]*Sq
rt[a + a*Sin[c + d*x]])/d

Rule 2675

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(b*(g
*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*(p + 1)), x] + Dist[(a*(m + p + 1))/(g^2*(p + 1)), Int[(
g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
 && GtQ[m, 0] && LeQ[p, -2*m] && IntegersQ[m + 1/2, 2*p]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sec ^2(c+d x) \sqrt{a+a \sin (c+d x)} \, dx &=\frac{\sec (c+d x) \sqrt{a+a \sin (c+d x)}}{d}+\frac{1}{2} a \int \frac{1}{\sqrt{a+a \sin (c+d x)}} \, dx\\ &=\frac{\sec (c+d x) \sqrt{a+a \sin (c+d x)}}{d}-\frac{a \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{d}\\ &=-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a+a \sin (c+d x)}}\right )}{\sqrt{2} d}+\frac{\sec (c+d x) \sqrt{a+a \sin (c+d x)}}{d}\\ \end{align*}

Mathematica [C]  time = 0.221874, size = 106, normalized size = 1.47 \[ \frac{\sec (c+d x) \sqrt{a (\sin (c+d x)+1)} \left (1-(1+i) (-1)^{3/4} \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right ) \tanh ^{-1}\left (\left (\frac{1}{2}+\frac{i}{2}\right ) (-1)^{3/4} \sec \left (\frac{d x}{4}\right ) \left (\cos \left (\frac{1}{4} (2 c+d x)\right )-\sin \left (\frac{1}{4} (2 c+d x)\right )\right )\right )\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(Sec[c + d*x]*(1 - (1 + I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*Sec[(d*x)/4]*(Cos[(2*c + d*x)/4] - Sin[(2
*c + d*x)/4])]*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2]))*Sqrt[a*(1 + Sin[c + d*x])])/d

________________________________________________________________________________________

Maple [A]  time = 0.113, size = 83, normalized size = 1.2 \begin{align*} -{\frac{1+\sin \left ( dx+c \right ) }{2\,d\cos \left ( dx+c \right ) } \left ( \sqrt{2}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{a-a\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{a}}}} \right ) a\sqrt{a-a\sin \left ( dx+c \right ) }-2\,{a}^{3/2} \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{a+a\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x)

[Out]

-1/2/a^(1/2)*(1+sin(d*x+c))*(2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a*(a-a*sin(d*x+c))^(1
/2)-2*a^(3/2))/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \sin \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*sec(d*x + c)^2, x)

________________________________________________________________________________________

Fricas [B]  time = 1.75501, size = 431, normalized size = 5.99 \begin{align*} \frac{\sqrt{2} \sqrt{a} \cos \left (d x + c\right ) \log \left (-\frac{a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{2} \sqrt{a \sin \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )} + 3 \, a \cos \left (d x + c\right ) -{\left (a \cos \left (d x + c\right ) - 2 \, a\right )} \sin \left (d x + c\right ) + 2 \, a}{\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right ) + 4 \, \sqrt{a \sin \left (d x + c\right ) + a}}{4 \, d \cos \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*sqrt(a)*cos(d*x + c)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*sqrt(a)*(cos(d*x
 + c) - sin(d*x + c) + 1) + 3*a*cos(d*x + c) - (a*cos(d*x + c) - 2*a)*sin(d*x + c) + 2*a)/(cos(d*x + c)^2 - (c
os(d*x + c) + 2)*sin(d*x + c) - cos(d*x + c) - 2)) + 4*sqrt(a*sin(d*x + c) + a))/(d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \left (\sin{\left (c + d x \right )} + 1\right )} \sec ^{2}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(sin(c + d*x) + 1))*sec(c + d*x)**2, x)

________________________________________________________________________________________

Giac [B]  time = 1.41828, size = 394, normalized size = 5.47 \begin{align*} \frac{\frac{\sqrt{2} a \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} + \sqrt{a}\right )}}{2 \, \sqrt{-a}}\right ) \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{\sqrt{-a}} - \frac{{\left (2 \, \sqrt{2} a \arctan \left (\frac{\sqrt{a}}{\sqrt{-a}}\right ) + 2 \, a \arctan \left (\frac{\sqrt{a}}{\sqrt{-a}}\right ) - \sqrt{-a} \sqrt{a}\right )} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{\sqrt{2} \sqrt{-a} + 2 \, \sqrt{-a}} + \frac{2 \,{\left ({\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right ) + a^{\frac{3}{2}} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )\right )}}{{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )} \sqrt{a} - a}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

(sqrt(2)*a*arctan(-1/2*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a) + sqrt(a))/s
qrt(-a))*sgn(tan(1/2*d*x + 1/2*c) + 1)/sqrt(-a) - (2*sqrt(2)*a*arctan(sqrt(a)/sqrt(-a)) + 2*a*arctan(sqrt(a)/s
qrt(-a)) - sqrt(-a)*sqrt(a))*sgn(tan(1/2*d*x + 1/2*c) + 1)/(sqrt(2)*sqrt(-a) + 2*sqrt(-a)) + 2*((sqrt(a)*tan(1
/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))*a*sgn(tan(1/2*d*x + 1/2*c) + 1) + a^(3/2)*sgn(tan(1/2*d*
x + 1/2*c) + 1))/((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 2*(sqrt(a)*tan(1/2*d
*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))*sqrt(a) - a))/d